US 2003/0076978 Al

tive index position indicators 405a-405¢. For example, if a
particular subopl such as that at position “2” in OPL array
404 is desired, the subopl 404¢ corresponding to the item at
index position indicator 405¢ is provided. Subopl 404¢ is
located at index position 2 in OPL array 404. Accordingly,
Data structure 400 references specific OPLs based on their
respective index position in OPL array 404. The index
position of a particular subopl is its opyid. Data structure
400 eliminates the need to store a specific opyid for each
element, thereby overcoming the deficiencies of the con-
ventional OPL. In a typical 32 bit system, Data structure 400
can store more than four billion items, because the number
of items is no longer limited by the range of the opyid.
(Position indicators 405a-405¢ are for illustrative purposes
and are not typically provided in OPL array 404.)

[0049] FIG. 4 also illustrates how empty slots in OPL
array 404 can be saved for future reference. For the empty
slot 404b at index position 405b, a placeholder property
“oplempty” can indicate that the respective item at index
position 405b is empty. Oplempty can indicate that a single
array element is empty and should be skipped. For multiple
adjacent empty array elements, a placeholder property of
“oplskip=n” can be used. Oplskip=n can indicate that the
next (n) entries are empty. As shown in FIG. 4 for example,
item 4044 corresponding to index position 4054, i.e., index
positions “3-5,” in OPL array 404 is filled by placeholder
property “oplskip=3,” indicating that the next 3 items in
OPL array 404 are empty and should be skipped.

[0050] A data file can be characterized as a collection of
objects. Each object can be defined by an OPL. Each OPL
can have an object handle (OH) associated with it. The OH
can be the index to the object OPL. Accordingly, the OH can
identify an object and does not change over the life of the
object. (See invariant field 4025 of FIG. 4.) The structure of
the file can be traversed by referencing the OH for each
object, without having to use information specific to each
object. An OH can remain unchanged (invariant) across file
saves, making an OH useful to reference objects in memory
and/or the file.

[0051] Ordinarily, an OH should be assigned to a single
object and should not be reused if a later version of an
application program has saved the file. For example, a
tracking table could be introduced in the current version of
the application program to track all objects created by the
program. If a previous version loads the file and deletes one
of the objects of the current version, then the tracking table
of the current version will not be updated to reflect the
changes. Additionally, if the OH for the deleted object is
reused for a different object created in the previous version,
then the tracking table of the current version will interpret
the reused OH as a different object. By determining if a later
version has saved the file, the present invention can avoid
reusing an OH until doing so will not create problems. Then,
when the later version loads the file, it can see all objects that
have been deleted. The tracking table can then be adjusted
accordingly. The present invention also can allow an OH to
be reused, if the highest version that has ever used the file
(determined by a file version watermark) saves the file. The
present invention can allow the highest version to determine
available OHs and make them available for reuse by remov-
ing all old references to objects which have been removed by
previous versions.

Apr. 24, 2003

[0052] To store a memory structure in an OPL or an OPL
array, an “OPL dictionary” can be defined, which indicates
the default values and types for each property. The number
of dictionaries can be minimized because unused properties
do not take up any space. Accordingly, one exemplary
embodiment of the present invention can utilize a single
dictionary. In such an embodiment, all common objects can
have the same opyid or array index position for each
identical item. In another exemplary embodiment, the fol-
lowing dictionaries can be provided: (1) a file structure
dictionary, which can include all the file structure related
properties (i.e., the root of the OPL tree); (2) a page object
dictionary, which can include properties for all page objects
of a publishing document; and (3) other structure dictionar-
ies, which can include a dictionary for describing text
containing objects with their associated text, or a color
description dictionary for defining colors used in a publica-
tion, etc. When properties are defined in a dictionary, they
can be referenced by any object. Accordingly, common
properties used by common objects are the same, because
they come from the same dictionary.

[0053] OPLs (and OPL arrays) can be advantageous for
preserving, or “round-tripping,” unknown properties or
information from future versions. The original OPL can be
loaded by a particular version from disk into memory. All of
the OPL’s properties that are known by the particular
version can be overwritten. The remaining properties (i.e.,
properties that are unknown to the particular version) were
created by a future version and can remain in the file
untouched. Thus, the unknown properties can be propagated
back to the saved file for use by a later version. The
unknown properties can be ignored when loaded and easily
retained when saved.

[0054] Using an OPL or OPL array as the memory struc-
ture can allow the in-memory structure to be separated from
the file format. Accordingly, future versions of the applica-
tion program can include many new features without prob-
lems associated with different file formats. For example,
structures can be moved around in memory to be more
efficient for a certain processor type without causing a
change in file formats. For each memory structure saved in
a file, there can be an associated OPL for saving that
structure. The mapping from OPL to structure need not be
one to one. The logical objects on disk can become separate
memory structures for performance reasons. For example,
hyperlink properties on an object might be stored in a
reverse lookup table and used to determine what other
objects are linked to any given object. Alternatively, mul-
tiple on-disk objects can be combined into a single structure
in memory.

[0055] Referring now to FIGS. 5 and 6, a method accord-
ing to the present invention for providing compatibility
between an active version, a previous version, and a later
version of an application program will be described. The
active version of the application program is an application
program currently operating on computer system 200 (FIG.
2). The previous version of the application program is any
version of the application program created before the active
version. The later version of the application program is any
version of the application program created after the active
version. Typically, a version of an application program is
designated by a number. For example, the first version of the
application program can be designated as version 1.0. Later



